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ABSTRACT

This paper presents & computationally efficient technique for calcu-
lating the transient wave from a planar source within a medium, The spa-
tial and temporal excitation are known at the input plane. The technique
is applicable to lossless media, to media with a loss coefficient that is
linear in frequency, and to media with a loss coefficient that is quadra-
tic in frequency. The technique is computationally efficient in that it
relies on FFT algorithms for the calculation rather than integral solu-
tions requiring geometrical interpretation. In this method, we find the
Green's function that solves the applicable wave equation and that meets
the required boundary conditions in the source plane. This Green’s func-
tion is then used in a form of the Kirchhoff integral that applies to
transient wave propagation and we find the response to a time-domain
impulse excitation. The solution is then expressed in the spatial frequen—
cy domain where a linear systems interpretation provides a physically
intuitive interpretation of the results, The propagation is seen to be
represent a time-varying spatial filter that increasingly attenuates the
higher spatial frequencies as time goes on. Unlike the continuous wave
case, the filter is neither band-limited nor a pure phase filter. The
particular form of the spatial filter depends on the medium assumed and on
the baffle conditions. The solutions for the impedance—matched baffle and
the resilient baffle can be expressed in terms of the solution for the
rigid baffle case. Several examples of calculated fields will be given,

INTRODUCT ION

The problem that we wish to solve can be stated using the geometry of
Fig. 1. Given the z—directed velocity excitation over an arbitrary shaped
region of the z=0 plane, we wish to find the acoustic velocity potential
&(x,y,z,t) at an arbitrary point in the positive-z half-space. The region
in the input plane will be assumed to be rigidly baffled. (It has been
shown * to be possible to relate impedance-matched boundary conditions and
resilient boundary conditions to the solutions for the rigid baffle.) We
will assume that the time and space variations of the input z-velocity are
separable and that the z—-velocity is given by
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Fig. 1 Source and receiver geometry

v,(x,5,0,t) = T(t)s(x,y) (1)

The method wilé be based on the spatial impulse response technique used by
Stapanishenz' and reviewed by Harris’, In this technique, it is shown

that the relation between the acoustic potential and the input z-velocity
is

b(x,y,z,t) = T(t) § h(x,y,z,t) (2)

where h(x,y,z,t) is known as the spatial impulse response in similarity to
approaches used in linear systems theory. The * symbol indicates convolu-
tion over the variable appearing immediately below it. The spatial impulse
response 15 defined as the velocity that will result when the source is
excited by a z—velocity of the form s(x,y)8(t) where 5(t) is the Dirac
impulse function. Hence the problem is reduced to one of finding the
spatial impulse response of the assumed spatial excitation,

Other approaches have been successful in computing the desired poten—

tial and are reviewed in Ref., 7. More recent techniques include Refs, 8-10
and 11,

In this paper we will seek to find the potential for lossless media,
for media with a linear frequency dependence of its attenuvation coeffi-
cient (over a portion of its frequency response), and for media with a
quadratic frequency dependence of its attenuation coefficient (again, over
a portion of its frequency range). The application of the impulse response
technique to the latter two cases is a new contribution of this paper. Am
additional feature of this paper is the representation of the solutions in
a form that is readily computed by FFT methods (or fast Hankel transform

algorithms for axisymmetric cases) without resorting to geometrical inter-
pretations of the integrals.



The technique for each medium will begin with a representation of the
wave equation model of that medium., The Green's function (or the two-
dimensional spatial transform of the Green’'s function) that solves the
wave equation and satisfies the assumed rigid baffle boundary conditions
will be displayed. From this Green's function (or transform), the poten—
tial at the observation point (or its two—~dimensional spatial transform)
will be related to the input z-velocity (or its spatial transform). Space
restrictions do not allow for the derivation of all results ?Etlfomplete
derivations are in preparation for submission for publication ">,

CASE I: LOSSLESS MEDIA

The wave equation is the Helmholtz wave equation,
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The Green’s function for the rigid baffle is known to be (assuming only
outward travelling waves),

5(ct-R)
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where
R = (x2 + y2 + z2)1/2 -

The spatial impulse response of this problem 1812
hix,y,z,t) = 2s(x.y);;8[t—(R/c)]/2nR (6)

Since the spatial convolutions are simplified in the spatial transform
domain, we take the spatial transform of Eq. (6) to get

B = (1/m53y[p(c?t2-22)1/21R(ct-2) N

where the overbar indicates the two-dimensional spatial tti7§form and
p=(f§+f2)1 . In this form we can identify the Jo[p(cztz-zz) JH(ct-1z)
term as ' a time-varying spatial filter for the propagation in lossless
media from a source in a rigid baffle. Since the results are going to be
computer—~implemented and normalized to maximum values, we will drop the

multiplicative constants. Calling this spatial filter the propagation
transfer function Bpl we have

By = Tolp(e?e2-22)1/ 2 n(ct-2) (8)
We find the spatial impulse response for a given value of z in the follow-
ing way. We calculate the spatial transform of the given s(x,y) function,
calculate the values of Bgl at the same spatial frequencies for each value

of time, and inverse spatial transform the product to produce the impulse
response.

CASE IXI: MEDIA WITH LINEAR FREQUENCY DEPENDENCE
OF LOSS COEFFICIENT

The wave equation is modelled by the telegrapher’'s equation of the
form,



(9

This model was proposed by Leeman in Refs, 9 and 10. The model begins with
a more complete expression that simplifies to Eq. 9 when one wishes to
model only the attenuiaion behavior in tissue in the frequency region from
0.5 to 10 MHz, Leeman asserts that while the model does not accurately
predict the signal velocities measured in tissues without additional

terms, it does agree with measured values of attenuation in tissues in the
region from 0.5 to 10 MHz,

The Green's function for this case has been found and is given in Ref
10. For the purpose of finding the propagation transfer function, the

spatial transform of the Green's function is required. This transform is
found by an alternate methodl? to be:

E(fx,fy,z,t)
(A2c4-4p2) 112 (242 ,2)1/2
= IO

2
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for Ac/2%p (10)

where I, is the modified Bessel function. For (Ac/2)<p, the argument of
the Bessel function becomes imaginary and the modified Bessel function
will become the conventional Bessell function Jo- By its definition, the

propagation transfer function is equal to the transform of the Green's
function, hence we have

(A204—4p2)1/2(021:2-12)1/2
ﬁp2 = Io[ ] expl~(A/2)c2t1H(ct-2) (11)
2
The transform of the spatial impulse response is
ﬁ(fx.fy,z.t) =
(492_A202)1/2(02t2_22)1/2
S(£,,8) I,

2

] expl~(A/2)c?t1H(ct-2) (12)

Finding the spatial impulse response requires taking the inverse spatial
transform giving

h(x,y,z,t) =

(4p2-A2c2)1/2 (242 ,2y1/2
F_l[;(fx'fy) IO[ ] exp[-(A/2)czt]]H(ct—z)
. 2

(13)

Hence evaluation of the spatial impulse response requires finding the
transform of the known function s(x,y), evaluation of the value of the
propagation transfer function h 9 at each spatial frequency, and evaluat-
ing the inverse transform of the product.



CASE III: MEDIA WITH A QUADRATIC FREQUENCY
DEPENDENCE OF LOSS COEFFICIENT

The wave equation for this case 1514 the Stoke's eguation (or the
'modified’ wave equation),
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where ¢ is the nominal acoustic velocity and B is the absorption coeffi-
cient. For typical liquids or gases, this equation will proiide an absorp—
tion coefficient that varies as the square of the frequency To simplify
the math, we will require that the source is axisymmetric. Since the
Helmholtz-Kirchhoff radiation integral is not valid for this equation, we
need to begin { finding a radiation integral, Using distribution theory
it can be shown that the radiation integral that applies to this case is

3g(r-1g,t) aé(ro.t)
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This equation shows how the field is related to the value of the function
and its normal derivative on the surface S enclosing the volume V. The

next step is to find an elementary solution to the wave equation. We
choose a point source of the form

p(x,y,z,t) = 8(t-ty)8(x-xp)8(y~y()8(z-2¢) (16)

By assuming a typical value of P of 10710 and restricting the frequency to
one that satisfies the inequality

Bwlt < 100 (17)

one can show!3 that the outward-travelling elementary solution to the
wave equation, e(x,y,z,t), is

[ (ct-R)2 ]
exp|— ==TToeTTs
Zczﬂt

e(x,y,z,t) = - (18)
Re(pt)1/2

The next step is to impose the rigid baffle boundary condition in order to
find the Green’s function. Subject to the same assumptions made in finding
the elementary solution, we can show that the Green's function of the wave
equation can be approximated 3 by

[ct-(r2+zz)1/2]2
2 exp |-
Zczﬂt

2 Yoz, = 19
g(x,y,z,t) ISV PRIV (19)

where r=(12+y2)1/2. This Green’'s function solves the wave eguations (sub-
ject to the approximations discussed) and meets the boundary condition
that the normal derivative is zero at z=0. The next step is to find the



spatial impulse response. Substituting the separable source expression
into the radiation integral of Eq. 15, we find

o
h(x,y,z,t) = S(x.y)§§[g(x.y,z.t) + ﬂ-—-jJ (20)
at
Taking the two—dimensional Fourier transform of Eq. 20 gives
g
E=73| 3+ p—- (21)
dat

Equation 21 relates the spatial spectrum of the impulse response to the
spatial spectrum of the input velocity distribution, The term in the
bracket is the transfer function h 3 of the propagation in the lossy
medium, It represents a time-varying spatial filter that modifies the
spatial spectrum of the input wave as both z and/or t change. The propaga-
tion transfer function is the term in the bracket in Eq. 21, For typical

values of P that are on the order of 10~ the second term of Eq, 21 will
be negligible and

~ ——

= sy (22)
where the transfer function for propagation h 3 in this medium is seen to
be approximately g. Finding this transfer Punction by taking the two-
dimensional spatial transform of the Green's function, we have
Sp3 = expl- 2n2023p2t]

[.exp[—zzllclﬂt]
P 4

c:(Bt)ll2

s .TO[Zﬂp(cztz-zz)l/zlﬂ(ct-z)J (23)

The method of finding the (approximate) impulse response is to take the
two-dimensional spatial transform of the known spatial function s(x,y),
evaluate the value of h 3 for each spatial frequency by using Eq. 23, and
then take the inverse transform of the product, We note that the term on
the right side of the convolution in Eq. 23 is the same propagation
transfer function associated with propagation through a lossless medium,

NUMERICAL SIMULATIONS

The following calculations have been done using a 64x64 array of dates
for 64 points in time., While the method gives a three~dimensional solution
at any given observation distance, one dimension is eliminated in the
plots by representing the solution through a median of the source, as is
conventionally done in the literature. The plots show the amplitude of the
wave plotted against cross—direction and time. For plotting convenience,
the plots have been normalized to the maximum amplitude value obtained for
lossless propagation. The width is normalized to the characteristic source
size, D, (i.,e.,, either the diameter or the width), and the time axis is
normalized by the valne of D/e. The origin of the timo azis begins at z/¢,
the instant that the first part of the wave arrives at the observation

plane. All plots are in an observation plane located 10 cm in front of the
source plane.

Figures 2—4 show the calculated impunlse response from a square piston
source (i.e., s(x,y) is a uniform square), The values of the loss coeffi-
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Fig. 2 Square transducer, impulse excitation, 2z=10 cm,
lossless diffraction, D=2.2 cm
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Fig. 3 Square transducer, impu%se exgitation. z=10 cm,
lossy medium (A = 1.5x107° s-m “), D=2.2 cm

cient in the lossy media are given in the captions. The lossy media are
seen to attenuate the waves and to cause a filling in of the region
between the 'tails’ of the wave as time proceeds., Also the lower spatial
frequencies are seen to increasingly dominate as time increases.

To illustrate a spatially nonuniform excitation, we consider a circu-
lar region (diameter is D) with a Gaussian spatial excitation. The 1/e
widths are indicated in the captions. The calculated impulse responses are
shown in Figs. 5-7. The shape of the Gaussian wave stays much the same in
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Fig. 4 Square transducer, impulse excitation, z=10 cm,
lossy medium (= 1072 5), D=3.1 cm
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Fig. 5 Circular source, Gaussian spatial excitation, z=10 cm
lossless medium (A = 0), 1/e point = 0.491 ¢cm, D= 2.2 cm

both the low loss and high loss cases because of the lower spatial fre-
quency content of this waveshape.

For a time excitation different than 6(t), the diffracted wave is a
convolution between the impulse response and the time derivative of the
temporel excitation portion of the source acoustic potential given by Eq.
1. The pressure of the wave is proportional to the time derivative of the
acoustic velocity potential, Figure 8 shows the pressure pattern from a
uniformly excited square velocity with a one-cycle square wave temporal

excitation. The period of the square wave is 8x10 °D/c. The effects of the
time derivative are noticeable along the time axis,
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Fig. 6 Circular source

3 Gansgian spatial excitation, z=10 cm
lossy medium (A = 1,5x10 .
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Fig. 7 Circular sourceé Gaussian spatial excitation, z=10 cm
lossy medium (B = 107° s), 1/e point = 1,18 c¢m, D = 3.1 ¢m

SUMMARY

This paper presents a computationally efficient method of computing
the transient acoustic waves in lossless and lossy media.

The fields are
expressed in terms of the spatial impulse response which is found by
inverse transforming the product of the transform of the spatial excita-
tion and the appropriate propagation transfer fannction for the medinm. No

geometrical interpretations are required as the method uses only the
spatial Fourier transform (or Hankel transform) in its computations.
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Fig. 8 Transient pressure response from square transducer

with a single—gycle square wave excitation with a period
of 8x10°D/¢ (z=10 cm, D=3.1 cm, p=10"10 )
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